14 research outputs found

    Magnetic Resonance Thermometry at 7T for Real-Time Monitoring and Correction of Ultrasound Induced Mild Hyperthermia

    Get PDF
    While Magnetic Resonance Thermometry (MRT) has been extensively utilized for non-invasive temperature measurement, there is limited data on the use of high field (≥7T) scanners for this purpose. MR-guided Focused Ultrasound (MRgFUS) is a promising non-invasive method for localized hyperthermia and drug delivery. MRT based on the temperature sensitivity of the proton resonance frequency (PRF) has been implemented in both a tissue phantom and in vivo in a mouse Met-1 tumor model, using partial parallel imaging (PPI) to speed acquisition. An MRgFUS system capable of delivering a controlled 3D acoustic dose during real time MRT with proportional, integral, and derivative (PID) feedback control was developed and validated. Real-time MRT was validated in a tofu phantom with fluoroptic temperature measurements, and acoustic heating simulations were in good agreement with MR temperature maps. In an in vivo Met-1 mouse tumor, the real-time PID feedback control is capable of maintaining the desired temperature with high accuracy. We found that real time MR control of hyperthermia is feasible at high field, and k-space based PPI techniques may be implemented for increasing temporal resolution while maintaining temperature accuracy on the order of 1°C

    Gene Regulatory Network Reconstruction Using Bayesian Networks, the Dantzig Selector, the Lasso and Their Meta-Analysis

    Get PDF
    Modern technologies and especially next generation sequencing facilities are giving a cheaper access to genotype and genomic data measured on the same sample at once. This creates an ideal situation for multifactorial experiments designed to infer gene regulatory networks. The fifth “Dialogue for Reverse Engineering Assessments and Methods” (DREAM5) challenges are aimed at assessing methods and associated algorithms devoted to the inference of biological networks. Challenge 3 on “Systems Genetics” proposed to infer causal gene regulatory networks from different genetical genomics data sets. We investigated a wide panel of methods ranging from Bayesian networks to penalised linear regressions to analyse such data, and proposed a simple yet very powerful meta-analysis, which combines these inference methods. We present results of the Challenge as well as more in-depth analysis of predicted networks in terms of structure and reliability. The developed meta-analysis was ranked first among the teams participating in Challenge 3A. It paves the way for future extensions of our inference method and more accurate gene network estimates in the context of genetical genomics

    The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours

    Get PDF
    Aberrant activation of intracellular signalling pathways confers malignant properties on cancer cells. Targeting intracellular signalling pathways has been a productive strategy for drug development, with several drugs acting on signalling pathways already in use and more continually being developed. The JAK/STAT signalling pathway provides an example of this paradigm in haematological malignancies, with the identification of JAK2 mutations in myeloproliferative neoplasms leading to the development of specific clinically effective JAK2 inhibitors, such as ruxolitinib. It is now clear that many solid tumours also show activation of JAK/STAT signalling. In this review, we focus on the role of JAK/STAT signalling in solid tumours, examining the molecular mechanisms that cause inappropriate pathway activation and their cellular consequences. We also discuss the degree to which activated JAK/STAT signalling contributes to oncogenesis. Studies showing the effect of activation of JAK/STAT signalling upon prognosis in several tumour types are summarised. Finally, we discuss the prospects for treating solid tumours using strategies targeting JAK/STAT signalling, including what can be learned from haematological malignancies and the extent to which results in solid tumours might be expected to differ
    corecore